Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells.
نویسندگان
چکیده
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment.
منابع مشابه
Applicability of the Dendrimer-quantum Dot (Den-QD) Bioconjugate as a Novel Nanocomposite for Signal Amplification in the Fabrication of Cocaine Aptasensor
A selective aptasensor was developed using the electrochemical transduction method for the ultrasensitive detection of cocaine. In this method, dendrimer-quantum dot (Den-QD) bioconjugate was utilized as a specific nanocomposite to efficiently fabricate the aptasensor. CdTe QD, which carries highly significant properties, was immobilized on the surface of a glassy carbon electrode (GCE), and po...
متن کاملDetection of lead ions using an electrochemical aptasensor
The aim of this research was to develop a simple, selective and sensitive aptasensor for detection of Pb2+ based on hairpin structure of complementary strand (CS) of aptamer (Apt). Screen printed carbon electrode (SPCE) was electrodeposited by gold nanoparticles to be used as the substrate for the immobilization of Apt-CS. Moreover, gold nanoparticles (AuNPs) and thionine were added to increase...
متن کاملتشخیص آنتیژن اختصاصی پروستات با استفاده از بیوسنسور الکتروشیمیایی مبتنی بر آپتامر
Background and Objectives: Detection of the biomarkers is one of the effective methods for diagnosis and treatment of prostate cancer. Prostate specific antigen (PSA) is currently the best biomarker available for controlling and detecting this cancer. The purpose of the current study was to design an electrochemical aptamer-based biosensor (electrochemical aptasensor) to measure...
متن کاملA label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells.
A novel, label-free strategy has been developed for facile electrochemical analysis of dynamic glycan expression on living cells, which uses carbon nanohorns to efficiently immobilize lectin for the construction of a recognition interface and enhancing accessibility of cell surface glycan motifs.
متن کاملDevelopment of electrochemical aptasensor based on gold nanorod and its application for detection of aflatoxin B1 in rice and blood serum sample
Aflatoxins are a group of fungal mycotoxins produced mainly by molds, e.g. Aspergillus flavus and Aspergillus parasiticus. Among Aflatoxins, Aflatoxin B1 (AFB1) is the most toxic. Therefore, there is a prompt need for determination of AFB1 in food products. This paper reports an electrochemical aptasensor for accurate determination of AFB1, which was constructed by the using gold nanorod sensin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 89 Pt 2 شماره
صفحات -
تاریخ انتشار 2017